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The Weibull modulus of toughened ceramics was evaluated. The fracture of the toughened
ceramics was assumed to be initiated by surface cracks induced during small-scale
contacts such as grinding and polishing and an exponential function was selected to
describe the R-curve behavior. Based on a brief theoretical analysis, a numerical simulation
procedure was designed to predict the fracture strength for toughened ceramics with
different R-curve characteristics. The Weibull modulus of each toughened ceramic was
estimated and compared with that of the un-toughened base material. It was concluded
that an increase in Weibull modulus can always result from toughening. The increase in
Weibull modulus was found to be related directly to the relative crack tolerance, i.e., the
ratio of the initial crack size to the critical crack size. This suggests that the improvement in
crack stability due to toughening is the main reason for the increased Weibull modulus.
C© 2001 Kluwer Academic Publishers

1. Introduction
As a consequence of the natural variability in size,
location and severity of the preexisting defects, the
measured fracture strength for a given ceramic usually
shows a large scatter and should be analyzed by the
well-known Weibull distribution function [1, 2],

Pf = 1− exp

[
−
(
σf

σ0

)m]
(1)

wherePf is the cumulative probability of fracture,σ0
andm are Weibull parameters, the scale parameter and
the Weibull modulus, respectively. The Weibull mod-
ulus,m, sometimes called the shape parameter, has a
value between 5 and 20 for typical ceramics. Accord-
ing to the standard statistics theory, a higherm would
lead to a steeper function and thus a lower dispersion
of fracture strength.

Recently, existence ofR-curve behavior has been es-
tablished for a number of ceramic materials including
partially stabilized zirconia (PSZ) [3], coarse grained
alumina [4, 5], silicon nitride with elongated grain
structure [6, 7] and a series of whisker- or particle-
reinforced ceramic composites [8–10].R-curve be-
havior dictates the functional dependence of crack
resistance,KR, on the crack size,c, and has a pro-
found influence on the mechanical properties of ceram-
ics. Especially, it was generally suggested thatR-curve
behavior offers the potential benefits of flaw tolerance
and increased Weibull modulus, important factors for
increasing reliability of ceramic components. By as-
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suming that theR-curve can be described by a simple
power-low,

KR = Acn (2)

(whereAandnare empirical constants), several authors
[11–13] have shown that the Weibull modulus,mT, of
a toughened ceramic can be related to modulus,mU, of
the original, or un-toughened brittle ceramic by

mT

mU
= 0.5

0.5− n
(3)

For many toughened ceramics, the parametern is usu-
ally less than 0.5. Consequently, an increased Weibull
modulus,mT, is obtained from Equation 3.

Although a simple analytical formulation, Equa-
tion 3, for the Weibull modulus can be deduced, several
authors [12, 13] have pointed out that the power law is
inconsistent with the partial stability of small surface
cracks observed in some toughened ceramics. Conse-
quently, alternative descriptions ofR-curves should be
employed for the analysis of the strength characteristics
of toughened ceramics.

The purpose of this paper is to further explore the
R-curve effect on Weibull modulus of toughened ce-
ramics by selecting an exponential equation to describe
the R-curve behavior. We concentrated our analysis
directly on a general case that the fracture of the con-
sidered materials is controlled by small-scale-contact-
induced surface cracks. The reason why we conducted
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the study on such a special case is that contact-induced
surface cracks have been confirmed to be the worst
defects which initiate the fracture of test specimens
for a given ceramic in most situation [14–16]. On the
other hand, assuming the existence of only one type of
fracture-initiating defects avoids the complexity con-
cerning the effect of co-existence of difference flaw
populations on the Weibull statistical analysis [17].

2. Theoretical background
In the previous studies, several empirical equations, in-
cluding a power law [18], an arctan function [19] and
an exponential function [20], have been proposed for
the description of the measuredR-curves for toughened
ceramics. We selected the exponential function which
was proposed originally by Ramachandran and Shetty
[20] for the present study. By noting that there is al-
ways a plateau in the measured and/or the theoretically
derivedR-curve and a lower-bound fracture resistance
is physically realistic, Ramachandran and Shetty chose
the following function to fit the measuredR-curve

KR = KH − (KH − KL) exp

(
− c

λ

)
(4)

whereKH, KL andλare adjustable parameters. Accord-
ing to the analysis of Ramachandran and Shetty [20],
KH and KL may be considered to be estimate of the
toughness of the toughened ceramic and that of the orig-
inal un-toughened ceramic, respectively. On the other
hand,λ approximately reflects the range of crack ex-
tension over which toughening effects should develop
and saturate. In other words,λmay be used as a rough
measure for the size of the steady-state process zone
formed behind the crack-tip during crack extension.

Several studies [6, 21–23] have confirmed that Equa-
tion 4 may give good fits to theR-curve data measured
by directly observing the stable growth of indentation-
induced cracks located on the surface of the test spec-
imens. Furthermore, Ramachandran and Shetty [21]
showed that the fracture strength of indented specimen
can be accurately predicted by a combined numerical
and graphical procedure determining the point of tan-
gency between crack-driving forces and theR-curves
described by Equation 4. These previous studies sug-
gest that Equation 4 is suitable for describing the
R-curve behavior of toughened ceramics.

As reviewed by Evans [14], contact-induced cracks
form whenever a hard particle plastically penetrates the
surface, as inevitably occurs during grinding, polishing
and any other abrasive surface-finishing process. The
cracks develop in response to a residual stress that re-
sults from the creation of a confined plastic zone in the
vicinity of the contact site. In other words, during the
contact event, the only driving force for crack initiation
and propagation is the residual stress. For the sake of
convenience, in the present study, we assumed that all
the surface cracks formed during contact events can be
equivalently treated to be half-penny in shape and the
residual stress may be modeled as being concentrated at
a point located at the crack center at the elastic-plastic
interface. Thus, the driving force,Kr, for the evolution
of the contact-induced surface crack may be character-

Figure 1 Typical stress intensity factors as functions of crack size.

ized as [24, 25]

Kr = χF

c3/2
(5)

wherec is the radius of the half-penny crack,F is the
peak contact load, andχ is a numerical constant de-
pendent on the contact geometry and the elastic/plastic
properties of the test material. We refer to the termχF
as the equivalent contact load in the following context.

Fig. 1 compares theKr(c) curve with theKR(c) curve.
As can be seen, dKr/dc< dKR/dc for all c. According
to fracture mechanics theory, during the contact event,
the crack would propagate stably untilKr= KR and
then an equilibrium position will be attained at the point
I where both curves intersect with each other. Thus
the equilibrium crack size,c0, i.e., the initial size of
the crack in the specimen subjected to contact, may be
obtained by equating Equations 4 and 5, i.e.,

χF

c3/2
0

= KH − (KL − KL) exp

(
−c0

λ

)
(6)

The horizontal line in Fig. 1 represents the fracture
resistance curve for the un-toughened base material
whose fracture toughness is given byKL. For the base
material, the initial crack size, (c0)B can be given by [13]

(c0)B =
(
χF

KL

)2/3

(7)

When the specimen containing contact-induced surface
crack is subjected to an applied stress,σa, the total stress
intensity at the crack tip is given by [24, 25]

K = Ka+ Kr (8)

where the applied stress intensityKa takes the general
form for half-penny shaped surface cracks [13]

Ka = 2Äσa

(
c

π

)1/2

(9)

whereÄ is a free-surface correction factor for stress in-
tensity. For small half-penny cracks relative to strength
test specimen dimension,Ä takes a value of 1.21 at the
surface intersection point of the cracks [26].
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According to the standard fracture mechanics theory
[27], incremental crack extension can occur whenK is
equal to or greater than the fracture resistance,KR and
an equilibrium position will be attained atK = KR if
dK/dc< dKR/dc. The criterion for the onset of crack-
extension instability atK = KR, leading finally to rup-
ture, is the point of common tangency, point F in Fig. 1.
Thus, the fracture strength of the specimen can be ob-
tained by substituting Equations 4 and 8 into the fol-
lowing equations [27],

K = KR

dK

dc
= dKR

dc

(10)

For the un-toughened base material,KR= KL. Thus the
fracture strength, (σf )B of the specimen can be deduced
directly from Equation 10 and has the form [13]

(σf )B = 3π1/2KL

8Ä(cc)
1/2
B

(11)

where (cc)B is the critical size crack, i.e., crack size
corresponding to the instability point, which is given
by

(cc)B =
(

4χF

KL

)2/3

= 2.5(c0)B (12)

Since an explicit expression for the fracture strength
cannot be deduced from Equation 9, a numerical simu-
lation procedure was designed based on the above anal-
yses in the present study to investigate the effect of
R-curve behavior on the strength distribution of tough-
ened ceramics.

3. Numerical simulation procedure
Previous studies have shown that, for a given material,
the fracture strengths of a batch of specimens which
were ground under the same condition exhibit a sig-
nificant variation and follow a Weibull distribution de-
scribed as Equation 1 [1, 2, 14]. Such a variation in
strength is primarily related to the spectrum of machin-
ing force, which dictate the range of crack sizes,c0, gen-
erated in the surface [14]. Suppose we have 100 ground
specimens of an un-toughened base material. The frac-
ture strengths of the 100 specimens are controlled by
the contact-induced surface cracks and follow a Weibull
distribution with a set prescribed values ofmU andσ0.
Thus, the fracture strength of each specimen,σi , may
be calculated by substituting a computer-generated ran-
dom number between 0 and 1 for the fracture probabil-
ity, Pf , in the alternative form of Equation 1,

σi = σ0

[
ln

(
1

1− Pf

)]1/mU

(13)

Then the critical crack length, (cc)B, for each speci-
men was claculated directly from Equation 11 using
the resultantσi and a prescribedKL-value. Substituting

the resultant 100 (cc)B-values into Equation 12, respec-
tively, 100 (χF) data were yielded and these data can
be used as asampleof equivalent contact load.

Now we imagine the above-mentioned 100 speci-
mens were toughened to possess risingR-curve behav-
ior and the toughness characteristics of the toughened
specimens can be described with Equation 4 with a set
of prescribed values ofKH, KL andλ. The 100 tough-
ened specimens were ground under the same condition
used for the above-mentioned un-toughened base mate-
rial. That is, thei -th toughened specimen was subjected
to a contact event with an equivalent contact load (χF)i ,
thei -th data appeared in theχF sample obtained above.
Following the analysis conducted in the preceding sec-
tion, the initial crack size,c0, the critical crack size,cc,
and the fracture strength,σf , for each specimen were
then determined with Equations 6 and 10, respectively,
using the Newton-Rhapson iteration method.

The resultant 100 strength data for the toughened
specimens were then analyzed to estimate the Weibull
modulus with the simple method proposed by Gong
and Li [28]. To do so, the coefficient of variation,cvar,
of the 100 strength data was calculated and then the
Weibull modulus was estimated directly with the fol-
lowing Equation [28],

mT = 1.250

cvar
− 0.562 (14)

To gain a basic understanding of theR-curve behavior
on the Weibull modulus,mT, of toughened ceramics,
the above-mentioned simulation procedure with tough-
ened specimens was repeated by fixingσ0= 500 MPa
andKL = 5 MPa·m1/2 and systematically adjusting the
prescribed values of the parametersmU, KH andλ.

4. Results and discussion
Rewriting Equation 1 in the form of natural logarithm,
we have

ln ln

(
1

1− Pf

)
= m ln σf −m ln σ0 (15)

Equation 15 shows that a straight line with a slope ofm
in the ln ln 1/(1− Pf ) versus lnσf plot would be obtained
if the fracture strength follows the Weibull distribution.
In Fig. 2, the strength data yielded from the numerical
simulation procedure for two “imagined” toughened ce-
ramics are plotted against the fracture probability in a ln
ln 1/(1− Pf ) versus lnσf scale, respectively, and com-
pared with those of the corresponding un-toughened
base materials. In these plots, the fracture probability,
(Pf )i , for thei -th strength data was calculated with the
commonly used Equation [1]

(Pf )i = i − 0.5

N
(16)

whereN= 100 is the total number of the strength data.
As can be seen, the linearity between ln ln 1/(1− Pf )

and lnσf is evident for each toughened ceramic, im-
plying that the strength variability of the toughened
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Figure 2 Comparison between the strength distributions of toughened
and un-toughened base materials. (a) Un-toughened base material has a
Weibull modulusmU= 5; the R-curve behavior of the toughened ma-
terial is described withKH= 10 MPa·m1/2 and λ= 50 µm. (b) Un-
toughened base material has a Weibull modulusmU= 15; theR-curve
behavior of the toughened material is described withKH= 10 MPa·m1/2

andλ= 50µm.

ceramics can be described well with Weibull distribu-
tion equation. Also, the Weibull modulus, i.e., the slope
of the straight line between ln ln 1/(1− Pf ) and lnσf
for each toughened ceramic is significantly higher than
that of the corresponding un-toughened base material,
indicating that improvement in the strength variability
results from toughening. Similar conclusions were also
obtained by analyzing the simulation results for other
“imagined” toughened ceramics.

Fig. 3 shows the Weibull moduli,mT, of toughened
ceramics as functions of the prescribed values ofKH
andλ, two key parameters which give a complete de-
scription for theR-curve characteristics. An interesting
feature of these plots is that, for a fixedKH-value, the
mT− λ curve passes through a well-defined maximum
and this maximum point shifts to the largeλ side as
KH increases. These findings seem to say that a suit-
able combination ofλ and KH may yield a narrower
strength distribution.

Following the analysis of Ramachandran and Shetty
[20], KH is the fracture toughness of the toughened ce-

Figure 3 Variation of Weibull modulus with the parameters describing
the R-curve for the toughened ceramics. (a)mU= 5; (b) mU= 10; (c)
mU= 15. For each data point, the fracture toughness,KL, of the corre-
sponding base material is kept to be 5 MPa·m1/2.

ramic andλ can be considered to be a rough measure of
the size of the steady-state process zone formed directly
behind the crack-tip during crack extension. Thus, the
relations betweenmT and R-curve parameters shown
in Fig. 3 may be useful for the microstructural design of
toughened ceramics aiming at improving the reliability.
During the past years, various toughening mechanisms
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have been proposed and analyzed theoretically and ex-
perimentally [9, 10, 29, 30]. Several models have been
established to predict the increment in fracture tough-
ness of the toughened ceramics relative to the base ma-
terial. Based on these models, the three parameters,
KH, KL andλ included in Equation 4 may be estimated
roughly for a given ceramic toughened with a certain
mechanism and then, based on the simulation results
shown in Fig. 3, the most effective toughening mecha-
nism, which would make the toughened material exhibit
a narrower strength distribution, may be determined by
comparing the expected Weibull modulus.

Fig. 3 indicates that the Weibull modulus,mT, of
toughened ceramic is always larger than that of the un-
toughened base material. This is consistent with the
previous analysis [11–13]. However, no effort was de-
voted directly to give a possible explanation for the
physical origin of the increased Weibull modulus in the
previous studies. Therefore, a further discussion on this
issue should be conducted.

As analyzed in Section 2, when the specimen of
the un-toughened base material is loaded to fracture,
the contact-induced surface cracks would extend sta-
bly from its initial size, (c0)B, to the critical size, (cc)B,
due to the decreasing tendency of the residual stress
intensity with increasing crack size. Theoretical calcu-
lation gives (cc)B/(c0)B= 2.5 (cf. Equation 12). Un-
doubtedly, for the toughened ceramic, the existence
of rising R-curve behavior would make the surface
cracks extend stably over a longer distance compared
with those in the un-toughened base material. In other
words, the ratio ofcc/c0 for the toughened ceramics
would be larger than that for the base material. This
analysis was confirmed by our numerical simulation
results which are partially shown in Fig. 4, where the
cc/c0 ratio is plotted as functions of the prescribed val-
ues of KH andλ for a fixed prescribedmU-value of
10. Clearly, thecc/c0-values for all the toughened ce-
ramics are larger than 2.5, implying that toughening
significantly improves the crack tolerance.

By noting the similarity between thecc/c0− λcurves
in Fig. 4 and themT− λ curves in Fig. 3, it can be

Figure 4 The ratio ofcc/c0 as functions of theR-curve parameters for
toughened ceramics. For each data point, the corresponding base material
has a Weibull modulusmU= 10.

Figure 5 Variation ofmT/mU with the relative crack tolerancecc/c0.

expected that, for the toughened ceramics, there may
exist a strong correlation between the Weibull modulus
and the relative crack tolerancecc/c0. In continuation
of this idea, we plot the ratio ofmT/mU, which may
be considered as a measure of the improvement of the
strength variability due to toughening, as a function of
the ratio ofcc/c0 in Fig. 5. It is of interest to note that
all the data points fall along a straight line which passes
through a characteristic point defined bymT=mU and
cc= 2.5 c0. Thus, one can conclude that the increase
in Weibull modulus of toughened ceramics is a con-
sequence of the improvement of crack stability due to
toughening.

5. Summary and conclusions
One of the main conclusions deduced from the above
discussion is that the existence of risingR-curve behav-
ior narrows the strength distribution, i.e., increases the
Weibull modulus. This conclusion is consistent with
those obtained previously by other authors [11–13].
However, the theoretical background for the present
analysis is rather different with those used in the previ-
ous studies. Although an explicit solution for the change
in Weibull modulus as a function ofR-curve param-
eters cannot be derived in the present study due to
the complicacy of theR-curve equation selected, the
main improvement in analysis is that, compared with
the previous studies, we have paid more attention to
the microstructural effects on the increase in Weibull
modulus. We related the Weibull modulus directly to
the R-curve parameters which have reasonable physi-
cal meanings and, as a result, such a treatment makes
it possible to evaluate theR-curve effect on strength
variability for toughened ceramics with certain tough-
ening mechanisms. Furthermore, a brief discussion on
the physical origin of the increase in Weibull modulus,
which was rarely mentioned in the previous studies,
was also conducted in the present study. The increase
in Weibull modulus was found to be related directly to
the relative crack tolerance, i.e., the ratio of the initial
crack size to the critical crack size. This suggests that
the improvement in crack stability due to toughening is
the main reason for the increased Weibull modulus.
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