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Weibull modulus of fracture strength
of toughened ceramics subjected
to small-scale contacts
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The Weibull modulus of toughened ceramics was evaluated. The fracture of the toughened
ceramics was assumed to be initiated by surface cracks induced during small-scale
contacts such as grinding and polishing and an exponential function was selected to
describe the R-curve behavior. Based on a brief theoretical analysis, a numerical simulation
procedure was designed to predict the fracture strength for toughened ceramics with
different R-curve characteristics. The Weibull modulus of each toughened ceramic was
estimated and compared with that of the un-toughened base material. It was concluded
that an increase in Weibull modulus can always result from toughening. The increase in
Weibull modulus was found to be related directly to the relative crack tolerance, i.e., the
ratio of the initial crack size to the critical crack size. This suggests that the improvement in
crack stability due to toughening is the main reason for the increased Weibull modulus.
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1. Introduction suming that theR-curve can be described by a simple
As a consequence of the natural variability in size,power-low,

location and severity of the preexisting defects, the

measured fracture strength for a given ceramic usually Kr = AC (2)
shows a large scatter and should be analyzed by t

; S : h{\e/vhereAandn are empirical constants), several authors
well-known Weibull distribution function [1, 2], ’

[11-13] have shown that the Weibull modulas;, of
or \™ a toughened ceramic can be related to moduhygs,of
Pr=1—exp — (1)

o0 the original, or un-toughened brittle ceramic by

where P is the cumulative probability of fracturey mr 0.5
andm are Weibull parameters, the scale parameter and =
the Weibull modulus, respectively. The Weibull mod-
ulus, m, sometimes called the shape parameter, has Bor many toughened ceramics, the paramefsrusu-
value between 5 and 20 for typical ceramics. Accord-ally less than 0.5. Consequently, an increased Weibull
ing to the standard statistics theory, a highewould  modulusmr, is obtained from Equation 3.
lead to a steeper function and thus a lower dispersion Although a simple analytical formulation, Equa-
of fracture strength. tion 3, for the Weibull modulus can be deduced, several
Recently, existence d®-curve behavior has been es- authors [12, 13] have pointed out that the power law is
tablished for a number of ceramic materials includinginconsistent with the partial stability of small surface
partially stabilized zirconia (PSZ) [3], coarse grainedcracks observed in some toughened ceramics. Conse-
alumina [4, 5], silicon nitride with elongated grain quently, alternative descriptions Bfcurves should be
structure [6,7] and a series of whisker- or particle-employed for the analysis of the strength characteristics
reinforced ceramic composites [8—10R-curve be- of toughened ceramics.
havior dictates the functional dependence of crack The purpose of this paper is to further explore the
resistanceKr, on the crack size¢, and has a pro- R-curve effect on Weibull modulus of toughened ce-
found influence on the mechanical properties of ceramramics by selecting an exponential equation to describe
ics. Especially, it was generally suggested tRaturve  the R-curve behavior. We concentrated our analysis
behavior offers the potential benefits of flaw tolerancedirectly on a general case that the fracture of the con-
and increased Weibull modulus, important factors forsidered materials is controlled by small-scale-contact-
increasing reliability of ceramic components. By as-induced surface cracks. The reason why we conducted
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the study on such a special case is that contact-induce:
surface cracks have been confirmed to be the wors : K+ K,
defects which initiate the fracture of test specimens : -
for a given ceramic in most situation [14-16]. On the x (I e
other hand, assuming the existence of only one type ol > x|l \_, Fo_.--C Ke
fracture-initiating defects avoids the complexity con- R~

cerning the effect of co-existence of difference flaw
populations on the Weibull statistical analysis [17].

t

Stress intens

2. Theoretical background

In the previous studies, several empirical equations, in-
cluding a power law [18], an arctan function [19] and
an exponential function [20], have been proposed for
the description of the measurBdcurves for toughened
ceramics. We selected the exponential function which Crack size, ¢

\[l;%? 1%? ?l”(])es i)dreosré%lp 2’|[Ili/d?/y g; r:(?t?:ga ?ﬁ;?l:hae?g isshzlt_tzigure 1 Typical stress intensity factors as functions of crack size.
ways a plateau in the measured and/or the theoreticall;

derivedR-curve and a lower-bound fracture resistancepé(ad as [24, 25]

is physically realistic, Ramachandran and Shetty chose xF

the following function to fit the measure®-curve Ki= 32 ®)
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_ _ _ C wherec is the radius of the half-penny cradk, is the
Kr = Kn = (Ku KL)exp( k) @ peak contact load, ang is a numerical constant de-
pendent on the contact geometry and the elastic/plastic
properties of the test material. We refer to the tegiin
as the equivalent contact load in the following context.

whereKy, K| andj are adjustable parameters. Accord-
ing to the analysis of Ramachandran and Shetty [20]
Ky and K may be considered to_be estimate of th? Fig. 1 compares thi&,(c) curve with theK g(c) curve.
toughness of the toughened ceramic and that of the Origis can be seen Kt /dc < dKg/dc for all c. According

inal un-toughened ceramic, respectively. On the Othe{o fracture mechanics theory, during the contact event,
hand,x approximately reflects the range of crack ex-

! . : the crack would propagate stably unkl = Kgr and
tension over which toughening effects should develoqhen an equilibrium position will be attained at the point
and saturate. In other wordsmay be used as a rough

. | where both curves intersect with each other. Thus
;neas?jrﬁ fﬁ.r 'E?ehsae oLthe;te_ady—statke Process zoffa equilibrium crack sizego, i.e., the initial size of
ormed behind the crack-tip during crack extension. the crack in the specimen Sl.,lb'eC,ted to contact, may be
Several studies [6, 21-23] have confirmed that Equa- P ) » May

tion 4 may give good fits to thB-curve data measured obtained by equating Equations 4 and 5, i..,

by directly observing the stable growth of indentation- xF Co
induced cracks located on the surface of the test spec- 32 Ki — (KL = Ki) exp N (6)
imens. Furthermore, Ramachandran and Shetty [21] 0

showed that the fracture strength of indented specimemhe horizontal line in Fig. 1 represents the fracture

can be accurately predicted by a combined numericalesistance curve for the un-toughened base material
and graphical procedure determining the point of tanwhose fracture toughness is given Ky. For the base

gency between crack-driving forces and fRecurves  material, the initial crack sizegg)s can be given by [13]
described by Equation 4. These previous studies sug-

gest that Equation 4 is suitable for describing the xF\??3
R-curve behavior of toughened ceramics. (Co)e = (K_L) 7

As reviewed by Evans [14], contact-induced cracks
form whenever a hard particle plastically penetrates th&Vhen the specimen containing contact-induced surface
surface, as inevitably occurs during grinding, polishingcrack is subjected to an applied stregsthe total stress
and any other abrasive surface-finishing process. Thi#itensity at the crack tip is given by [24, 25]
cracks develop in response to a residual stress that re- K — Kot K 8
sults from the creation of a confined plastic zone in the = Ka+ Kr (8)

vicinity of the contact site. In other words, during the \yhere the applied stress intensky takes the general
contact event, the only driving force for crack initiation ¢5rm for half-penny shaped surface cracks [13]
and propagation is the residual stress. For the sake of

convenience, in the present study, we assumed that all c\ 12

the surface cracks formed during contact events can be Ka= 29%(—) )
equivalently treated to be half-penny in shape and the

residual stress may be modeled as being concentratedwahere? is a free-surface correction factor for stress in-
a point located at the crack center at the elastic-plastitensity. For small half-penny cracks relative to strength
interface. Thus, the driving forcé, for the evolution test specimen dimensiof, takes a value of 1.21 at the

of the contact-induced surface crack may be charactesurface intersection point of the cracks [26].
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According to the standard fracture mechanics theoryhe resultant 100c{)g-values into Equation 12, respec-
[27], incremental crack extension can occur wieis  tively, 100 (xF) data were yielded and these data can
equal to or greater than the fracture resistabgeand  be used as sampleof equivalent contact load.
an equilibrium position will be attained & = K if Now we imagine the above-mentioned 100 speci-
dK /dc < dK/dc. The criterion for the onset of crack- mens were toughened to possess rigtagurve behav-
extension instability aK = KR, leading finally to rup-  ior and the toughness characteristics of the toughened
ture, is the point of common tangency, point F in Fig. 1.specimens can be described with Equation 4 with a set
Thus, the fracture strength of the specimen can be obaf prescribed values dfy, K. andi. The 100 tough-
tained by substituting Equations 4 and 8 into the fol-ened specimens were ground under the same condition

lowing equations [27], used for the above-mentioned un-toughened base mate-
rial. Thatis, the -th toughened specimen was subjected
K = Kg to a contact event with an equivalent contact lggg),
dK  dKg (10)  thei-th data appearedin thég= sample obtained above.

Following the analysis conducted in the preceding sec-
tion, the initial crack sizegg, the critical crack sizeg,

For the un-toughened base materié,= K, . Thusthe ~@nd the fracture strengthy, for each specimen were

dc ~ dc

directly from Equation 10 and has the form [13] using the Newton-Rhapson iteration method.
The resultant 100 strength data for the toughened
372K, specimens were then analyzed to estimate the Weibull
(o1)s = 7 (11)  modulus with the simple method proposed by Gong
8Q(co)g and Li [28]. To do so, the coefficient of variatiot,

. N _ . ~of the 100 strength data was calculated and then the
where €c)g is the critical size crack, i.e., crack size weibull modulus was estimated directly with the fol-
corresponding to the instability point, which is given |owing Equation [28],
by
m 1.250
4yE\ 23 T =
@e= (%) —25@e @2 G

To gain a basic understanding of tRecurve behavior

Since an explicit expression for the fracture strengtPn the Weibull modulusmr, of toughened ceramics,
cannot be deduced from Equation 9, a numerical simuth€ @bove-mentioned simulation procedure with tough-
lation procedure was designed based on the above an&D€d specimens was repeated by fixigg- 500 MPa
yses in the present study to investigate the effect ofNdKL =5 MPam®? and systematically adjusting the
R-curve behavior on the strength distribution of tough-Prescribed values of the parametars, Ky anda.

ened ceramics.

— 0562 (14)

4. Results and discussion

3. Numerical simulation procedure Rewriting Equation 1 in the form of natural logarithm,

Previous studies have shown that, for a given materialV® have

the fracture strengths of a batch of specimens which

were ground under the same condition exhibit a sig- In In<
nificant variation and follow a Weibull distribution de-

scribed as Equation 1 [1, 2, 14]. Such a variation in . . . .

strength is primarily related to the spectrum of ma(:hin-!Equatlon 15 shows that a straight line with a slopenof
ing force, which dictate the range of crack sizgsgen- " the Inin 1/(1— Py) versus Iro; plot would be obtained
erated in’the surface [14]. Suppose we have 100 groun'&the fracture strength follows the Weibull distribution.
specimens of an un-toughened base material. The fra&'? Fig. 2 the strength data y|¢lded_ from the numerical
ture strengths of the 100 specimens are controlled b |mglat|on procedure fprtwo imagined tough_gngd ce-
the contact-induced surface cracks and follow a Weibul[ 2T¢S aré plotted againstthe fracture probablhty it
distribution with a set prescribed valuesrofy andoy. n1/ (1_.Pf) versus Inoy scale, respec_t|vely, and com-
Thus, the fracture strength of each specimgnmay pared with _those of the corresponding un-toughe_n_ed
be calculated by substituting a computer-generated ra Jase materl_als. In these plots, the fracture prol_aablllty,
dom number between 0 and 1 for the fracture probabil- Py, for thei -th strength data was calculated with the
ity, P, in the alternative form of Equation 1, commonly used Equation [1]

1
):mInUf—man'O (15)
- P

i —0.5

1/my P = 16
oi zao[ln(ljpf)} (13) (Pr) N (16)

whereN = 100 is the total number of the strength data.
Then the critical crack lengthed)s, for each speci- As can be seen, the linearity between In In ()
men was claculated directly from Equation 11 usingand Ino: is evident for each toughened ceramic, im-
the resultant; and a prescribel{| -value. Substituting plying that the strength variability of the toughened
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Figure 2 Comparison between the strength distributions of toughened e« -
and un-toughened base materials. (a) Un-toughened base material has /A/A\k& K,=8
Weibull modulusmy = 5; the R-curve behavior of the toughened ma- 40r & A — KH =10
terial is described withKy =10 MPam*?2 and » =50 um. (b) Un- E" / \ —A—K, =12
toughened base material has a Weibull modutys= 15; the R-curve . a5) A A\
behavior of the toughened material is described Kith= 10 MPam?/2 %’ / -
andx =50 um. = [ e, \‘
—8 30k /- \-\.
™~
E u .\.\
ceramics can be described well with Weibull distribu- 3 2°T |/ e*"*-e-e_, .
tion equation. Also, the Weibull modulus, i.e., the slope ‘@ . e,
of the straight line between In In 1/@ P;) and Inos = 20} '/ *
for each toughened ceramic is significantly higher than ¢
L H L L L

Fha; of.the corrgspondmg un'-toughened base r.nat.e'rlal 15 %5 50 75 100 125 180 175

indicating that improvement in the strength variability

results from toughening. Similar conclusions were also A (um)

obtained by analyzing the simulation results for other (©)

“ima.'gined” toughened _ceramics. . Figure 3 Variation of Weibull modulus with the parameters describing
Flg' _3 shows th? Weibull mOdUImT_’ of tothened the R-curve for the toughened ceramics. (a) =5; (b) my = 10; (c)

ceramics as functions of the prescribed valueXaf  m;—15. For each data point, the fracture toughnés, of the corre-

and, two key parameters which give a complete de-sponding base material is kept to be 5 M&2.

scription for theR-curve characteristics. An interesting

feature of these plots is that, for a fix&qd;-value, the

mr — A curve passes through a well-defined maximumramic and. can be considered to be a rough measure of

and this maximum point shifts to the largeside as the size of the steady-state process zone formed directly

Ky increases. These findings seem to say that a suibehind the crack-tip during crack extension. Thus, the

able combination of. and Ky may yield a narrower relations betweemy and R-curve parameters shown

strength distribution. in Fig. 3 may be useful for the microstructural design of
Following the analysis of Ramachandran and Shettyoughened ceramics aiming atimproving the reliability.

[20], Ky is the fracture toughness of the toughened ceburing the past years, various toughening mechanisms
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have been proposed and analyzed theoretically and ex 3.0
perimentally [9, 10, 29, 30]. Several models have been 5 m=5 ‘
established to predict the increment in fracture tough- & m.=10 &
ness of the toughened ceramics relative to the base me 25 v m

terial. Based on these models, the three parameter: &
Ky, KL andx included in Equation 4 may be estimated >

roughly for a given ceramic toughened with a certain '\E 20F AM
mechanism and then, based on the simulation result: - gﬁ"”g
shown in Fig. 3, the most effective toughening mecha-
nism, which would make the toughened material exhibit
a narrower strength distribution, may be determined by
comparing the expected Weibull modulus.

Fig. 3 indicates that the Weibull modulus, of
toughened ceramic is always larger than that of the un-
toughened base material. This is consistent with the c./c,
previous analysis [11-13]. However, no effort was de-
voted directly to give a possible explanation for the Figure 5 Variation ofmr/my with the relative crack toleranag/co.
physical origin of the increased Weibull modulus in the

previous studies. Therefore, a further discussion on this .
issue should be conducted expected that, for the toughened ceramics, there may

As analyzed in Section 2, when the specimen Ofexistastrong correlation between the Weibull modulus

o d the relative crack tolerancg/cp. In continuation
the un-toughened b terial is loaded to fracturéN 1€ : :
© un-foughened base material 1s foaded 1o ractur df this idea, we plot the ratio afhr/my, which may

the contact-induced surface cracks would extend Stabe considered as a measure of the improvement of the

bly from its initial size, , to the critical size,q.)s, o ; .

dlile to the decreasing(:?()eidency of the residfj(ca)llBstrestsiglrengFh Va”ab'“.ty d_ue to to_ughe_nlng, as a function of

intensity with increasing crack size. Theoretical calcu- e ratio OfCC/S:O in Fig. 5. Itis of Interest to note that
all the data points fall along a straight line which passes

lation gives €c)s/(Co)s =2.5 (cf. Equation 12). Un- - . . -
doubtedly, for the toughened ceramic, the existencéhrOngh a characteristic pomtdefmedrhy_mu_ and
C. = 2.5 ¢g. Thus, one can conclude that the increase

of rising R-curve behavior would make the surface . : S
cracks extend stably over a longer distance compare'{i1 Weibull modul_us of toughened ceramics 1S a con-
with those in the un-toughened base material. In othe equence of the improvement of crack stability due to
words, the ratio oft./cy for the toughened ceramics oughening.

would be larger than that for the base material. This

analysis was confirmed by our numerical simulation .

results which are partially shown in Fig. 4, where the®- Summary and conclusions

ce/Co ratio is plotted as functions of the prescribed val-One of the main conclusions deduced from the above
ues of Ky and A for a fixed prescribedny-value of Q|scu55|on is thatthe existence of nsiR:g:ur_ve behav-
10. Clearly, thece/co-values for all the toughened ce- iOr narrows the strength dlstrlbultlon., ie., m_creases.the
ramics are larger than 2.5, implying that tougheningwe'bU” mo_dulus. Th.IS conclusion is consistent with
significantly improves the crack tolerance. those obtained previously by other authors [11-13].

By noting the similarity between tieg/co — A curves ~ However, the theoretical background for the present
in Fig. 4 and themr — A curves in Fig. 3, it can be analysis is rather different with those used in the previ-

ous studies. Although an explicit solution for the change
in Weibull modulus as a function dR-curve param-
eters cannot be derived in the present study due to

2.5 3.0 35

4.0 the complicacy of theR-curve equation selected, the
—a—K = main improvement in analysis is that, compared with
—e—K_ =10 the previous studies, we have paid more attention to
_A-Aa —A— K =12 the microstructural effects on the increase in Weibull
351 e ~C modulus. We related the Weibull modulus directly to
° A/ \\ the R-curve parameters which have reasonable physi-
~, / P i A cal meanings and, as a result, such a treatment makes
© d - it possible to evaluate thR-curve effect on strength
30fF [ e variability for toughened ceramics with certain tough-
//' . ening mechanisms. Furthermore, a brief discussion on
/ " the physical origin of the increase in Weibull modulus,
v which was rarely mentioned in the previous studies,
2-5o 5'0 1(')0 1é0 was also conducted in the present study. The increase
in Weibull modulus was found to be related directly to
A (pm) the relative crack tolerance, i.e., the ratio of the initial

Figure 4 The ratio ofcc/cp as functions of thér-curve parameters for crack size to the critical crack size. This suggests that

toughened ceramics. For each data point, the corresponding base matertfle imp_rovement in Crac!( stability due _tO toughening is
has a Weibull modulusy = 10. the main reason for the increased Weibull modulus.
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